When people talk about the Internet of Things (IoT) they tend to
think about big data technologies like Hadoop where petabyte size
datasets are stored and analyzed for both known and unknown patterns.
What many people don’t realize is that many IoT use cases only require
small datasets. What is small data, you ask? Small data is a
dataset that contains very specific attributes. Small data is used to
determine current states and conditions or may be generated by
analyzing larger data sets. When we talk about smart devices
being deployed on wind turbines, small packages, on valves and pipes, or
attached to drones, we are talking about collecting small datasets. Small data tell us about location, temperature, wetness, pressure,
vibration, or even whether an item has been opened or not. Sensors give
us small datasets in real time that we ingest into big data sets which
provide a historical view.
So why is small data important? Small data can trigger events based
on what is happening now. Those events can be merged with behavioral or
trending information derived from machine learning algorithms run
against big data datasets. Here are some examples:
Examples of Small and Big Data
A wind turbine has a variety of sensors mounted on it to determine
wind direction, velocity, temperature, vibration, and other relevant
attributes. The turbine’s blades can be programmed to automatically
adjust to changing wind conditions based on the information instantly
provided by small data. These small data sets are also ingested into a
large data lake where machine-learning algorithms begin to understand
patterns. These patterns can reveal performance of certain mechanisms
based on their historical maintenance record, like how wind and weather
conditions effect wear and tear on various components, and what the life
expectancy is of a particular part.
Another example is the use of smart labels
on medicine bottles. Small data can be used to determine where the
medicine is located, its remaining shelf life, if the seal of the bottle
has been broken, and the current temperature conditions in an effort to
prevent spoilage. Big data can be used to look at this information over
time to examine root cause analysis of why drugs are expiring or
spoiling. Is it due to a certain shipping company or a certain retailer?
Are there reoccurring patterns that can point to problems in the supply
chain that can help determine how to minimize these events?
Do You Need Big or Small Data?
Despite what some may think, big data is not a requirement for all
IoT use cases. In many instances, knowing the current state of a handful
of attributes is all that is required to trigger a desired event. Are
the patient’s blood sugar levels too high? Are the containers in the
refrigerated truck at the optimal temperature? Does the soil have the
right mixture of nutrients? Is the valve leaking?
Optimizing these business processes can save companies millions of
dollars through the analysis of relatively small datasets. Small data
knows what a tracked object is doing. If you want to understand why
the object is doing that, then big data is what you seek. So, the next
time someone tells you they are embarking on an IoT initiative, don’t
assume that they are also embarking on a big data project.
No comments:
Post a Comment